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1 Introduction

Suppose, we consider a population which is characterized by some parameters such as mean(for lo-
cation), variance(for scale), skewness or kurtosis(for shape). In statistical analysis, one of the major
aim is to make inference about the population that means about some of its unknown parameter(s).
In Estimation chapter we estimate those parameters with the help of the given sample data. Now in
Statistical Hypothesis Testing chapter, we will test or validate a statement H (called hypothesis) about
some unknown parameter of our interest in the light of the given sample data. Depending on the data,
finally that hypothesis will either be rejected or it would not be rejected.

Statistical hypothesis: A statement about a parameter characterising a population.

Let (x1, x2, . . . , xn) be a random sample of size n(≥ 1) and xi is an observed value of r.v. Xi such that
Xi ∼ fθ(x), ∀i = 1(1)n. Suppose, a statement H : θ = θ0 (known) is given about the unknown population
parameter θ. Our task is to validate the given statement H against some alternative statement like θ > θ0

or θ < θ0 or θ 6= θ0. Sometimes, a statement H may be given as θ > θ0 (or, θ < θ0). Hence, it is clear that
any hypothesis about a parameter θ is nothing but a proper subset of the parameter space Θ and hence
of two types. If the subset is singleton set then it can specify the population completely (e.g. θ = θ0) but
when it is not a singleton, then it cannot specify the population completely (e.g. θ ≥ θ0, θ < θ0, θ 6= θ0,
etc.). We define these two types of hypothesis below.

Simple hypothesis: Any statistical hypothesis which specifies the population distribution completely.
Example: Suppose, observations are coming from N(µ, σ2) population with σ known (say, 10) then if a
hypothesis say that µ = 50, we call it Simple hypothesis because specific value of the unknown parameter
(under the given hypothesis) completely specify the population.

Composite hypothesis: Any statistical hypothesis which does not specify the population distribution
completely. Example: Suppose, observations are coming from N(µ, σ2) population and σ is known (say,
10) then if a hypothesis say that µ > 50, we call it Composite hypothesis. Because population is not
completely specified as value of the only unknown parameter µ is not exactly known under the given
hypothesis.

In general, for any random experiment, there is always a belief (or hypothesis) H about a possible
subset of Θ where true θ may belong but that can not be proved. We would like to validate that belief
through a statistical hypothesis testing procedure based on sample data only.
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So far we have understood the meaning of hypothesis along with its different nature and the ultimate
aim of a hypothesis testing procedure. Now, we will see how to frame such a hypothesis testing problem
and how to perform it statistically.

Let us start with a simple example. Let p proportion of voters in a population favour a candidate A
against another candidate B. Now, a statement is made that H : p > 1/2. Our task is to validate or test
the given statement. Suppose 20 voters are sampled and X denotes number of voters favour candidate
A out of 20 samples. If we observe x = 2, we do not agree with given hypothesis. If x = 5, still we do
not like to accept this. But, if x = 9 or 10 or more, then we may agree with the given statement that
p > 1/2. Hence, it is clear that test of a hypothesis means to construct a subset R ⊆ X , where X being
sample space of X, and if the observed sample point x (∈ X ) falls in R, we reject the given hypothesis H
otherwise accept it. R can be said as rejection region of the hypothesis H : p > 1/2.

If you carefully observe that what we actually do for this given problem, then it will be clear that at
first we take p = p0 = 1/2 and calculate np0 = 15/2 = 7.5 as E(X) = np. Then we reject the given
hypothesis p > 1/2, if x is too smaller than 7.5. This can be interpret in a equivalently way that if
x is too smaller than E(X|p0) = np0 = 7.5, the expected value of X assuming p = p0 = 1/2, we will
reject p > 1/2. From the above example we feel a need to frame another hypothesis p = 1/2 or p ≤ 1/2
containing equality which contradicts the given hypothesis p > 1/2.

From the example of statistical hypothesis testing problem two things are clear. First is that the
statistical testing procedure is a battle of two defined hypotheses (or, statements) H and H

′
which

contradicts the given hypothesis H. Sample data helps to choose the one which is more likely. So, if the
hypothesis H

′
is not given, one should define it before starting the statistical test procedure. This is

Fishers approach for hypothesis testing which requires the specification of only one hypothesis, known as
null hypothesis (H0). The null hypothesis H0 either be same as the existing belief H or it may contradict
H. If the sample data are not consistent with H0, i.e., if improbable outcomes are obtained, H0 is rejected.
In this sense, Fisherian statistical hypothesis testing can be characterized as a validation procedure for
the statement in H0 (equivalently, in H) based on sample data only.

Generally, we mark a given statement H : θ = θ0 as null hypothesis as θ − θ0 = 0 implies there is
no (or, null) difference between θ and its specified value θ0. Null hypothesis is denoted as H0. Hence,
H ≡ H0. We also call any hypothesis (may or may not given) as alternative hypothesis which contradict
H0. Alternative hypothesis is denoted as HA. This does not mean that the given hypothesis H is to be
considered always as null hypothesis. When a given statement H about θ consists equality, we will frame
it as H0. When given H does not consist any equality, we will set H as HA and consider a hypothesis,
which contradict H, as H0. Obviously, then H0 will consist equality as H does not. For example, if
H : θ > θ0 then H ≡ HA and H0 will be θ ≤ θ0 or θ = θ0.

Null hypothesis: A hypothesis (may be simple or composite) that includes an equality of a population
parameter with a specified value. In other words, null hypothesis is that which says there is no difference
(i.e. null difference) between the true (unknown) parameter and a specified value. Usually, it is denoted
as H0. For example, H01 : θ = θ0. For two samples problem, often we wish to test H02 : θ1 = θ2 (null
difference) ⇔ H02 : θ1 − θ2 = 0 or H02 : θ1θ2 = 1.

Alternate hypothesis: A hypothesis (often composite) which always contradicts the null hypothesis,
and associated with a theory one would like to believe. Usually, it is denoted as HA. For example,
HA1 : θ 6= θ0 or HA2 : θ > θ0 or HA3 : θ < θ0.
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Thus in connection with the above example, we set p ≤ 1/2 as null hypothesis here (as it includes
equality) and frame p > 1/2 as alternative hypothesis. Now, the problem is defined as to test H0 : p ≤ 1/2
against HA : p > 1/2.

Generally it is seen that a belief about θ is a composite type statement or a composite hypothesis. The
null hypothesis is often the reverse of what the experimenter actually believes; then it is put forward in the
hope that the data will contradict the null hypothesis. Though of course, there is also some exceptional
real life examples.

The next issue in the above example of testing H0 : p ≤ 1/2 against HA : p > 1/2 is to choose a suitable
subset W , called critical region or rejection region for H0, from the sample space X = 0, 1, 2, . . . , 20. If
anyone suggests W = {X : X ≥ 8}, we cannot judge it is good enough or not unless we calculate its
probability of occurrence as X is a r.v. Now, to calculate the Prob(X ∈ W ), we have to fix θ at some
point. Here we have to look into the matter quite critically.

Critical Region or Rejection Region (Definition 1): The set of all possible sample values W ⊆ X
for which the null hypothesis (H0) is rejected, is known as critical region or rejection region associated
with the test.

Statistical Hypothesis Testing: A statistical hypothesis testing procedure or hypothesis test is a
rule that specifies for which sample values the decision is made to reject the null hypothesis (H0).

By a statistical hypothesis testing procedure either we reject or accept H0 based on the available
data. Many statisticians, however, take issue with the notion of ”accepting H0.” Instead, they say: you
reject H0 or you fail to reject H0. Why the distinction between ”acceptance” and ”failure to reject?”
Acceptance implies that H0 is true which cannot be concluded. Failure to reject implies that the data
are not sufficiently persuasive for us to prefer the HA over H0. Hence, we say: either reject or do not
reject the H0 on the basis of the data in hand.

For an instance, suppose we accept H0 but actually H0 is not true at all. Then, we will commit an
error. Another way, we may commit another type of error if we reject a true H0. Hence, there are two
kind of errors that may occur in any statistical hypothesis testing procedure.

Type-I Error: When we reject H0 but actually it is true, then Type-I Error occurs.

Type-II Error: When we accept H0 but actually it is false, then Type-II Error occurs.

Which error is more harmful that cannot be concluded generally. It is completely case specific and
depends on which hypothesis (H0 or HA) experimenter is giving more importance. We can summarize
the all possible situations in a testing procedure in Table 1. Since all the four possibilities in Table 1 are
random events due to the randomness of the data, we may measure the extent of two errors separately
through their respective probabilities and try to reduce them in order to built efficient test procedure.

Probability of Type-I Error: Probability of rejecting H0 when actually it is true. So, Probability of
Type-I Error=Pr(X ∈ W |H0 is true)=Pr(X ∈ W |H0), where W denotes critical region associated with
the test. In practice, it is equated with the level of the test ′α′ for H0 : θ = θ0, but actually they are not
same.
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Probability of Type-II Error: Probability of accepting H0 when actually it is false. So, Probability
of Type-II Error=Pr(X 6= W |H0 is false)=Pr(X 6= W |H1), where W denotes critical region associated
with the test. Usually denoted as ′β′.

Though our aim is to reduce both the error but it is not possible simultaneously. To minimize
Prob(Type-I Error), if we choose a smaller critical region Wα2 than Wα1 (in Xn), for level α2 < α1,
then probability of accepting H0 will increase and that will inflate the extent of probability of type-II
error (see Figure 1 for illustration in case of unidimensional r.v. X, i.e. n = 1). Hence, the best strategy

Figure 1: Change of acceptance and rejection region for changing α values

is to keep one error within a specified upper limit and then try to choose a W that minimize the other
error. Now, in testing procedure, W is chosen from the relation that Probability of Type-I Error =
Prob(X ∈ W |H0) ≤ α, where α is called the level of the significance or simply level of the test which is
to be suggested by the experimenter. ′H0 is true′ can be accounted by considering θ = θ0 as θ0 ∈ Θ0 for
any Θ0 (singleton or not). Hence for practical purpose, Probability of Type-I Error is calculated from
Prob(X ∈ W |θ = θ0) and this is equated with α to find the critical region W . Thus, if the observed
sample x ∈W , we reject θ = θ0 i.e. H0 otherwise accept H0. Then, it is said that the test is level α test.
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Size: The upper bound of the Probability of Type-I Error considered for a test i.e.
supθ∈Θ0Pr(Rejecting H0|θ)=supθ∈Θ0Pr(X ∈W |θ).

Level of significance (α): The probability on the basis of which the differences are being regarded
as significant of the falsity of the null hypothesis or not for a test. Conventionally, it is denoted by α.
Experimenter has to suggest the value of ′α′ to conduct a test procedure.

Note 1: Level of significance (α) of a test is taken as the upper bound of its size. So,
supθ∈Θ0Pr(Rejecting H0|θ)≤ α. Hence, for any θ ∈ Θ0, Prob(Type-I Error) ≤ size ≤ level of significance.
In particular, when H0 is simple hypothesis, i.e., H0 : θ = θ0, then Prob(Type-I Error) = size.

Note 2: If experimenter gives more importance to the type-I error than type-II error, then α should be
set at a very small value, like 0.01 or 0.005. If he/she gives more importance to the type-II error, then α
should be set at a relatively large value (like 0.05 or 0.1) so that there is a possibility to have relatively
smaller Prob(Type-II Error) than the former situation.

Size α test: For 0 ≤ α ≤ 1, a test is called size α test if supθ∈Θ0Pr(Rejecting H0|θ) = α.

Level α test: For 0 ≤ α ≤ 1, a test is called level α test if supθ∈Θ0Pr(Rejecting H0|θ) ≤ α.

Power: Probability of rejecting H0 when actually it is false i.e. Pr(t ∈ C|H0 is false), where C denotes
critical regions.

But most often the calculation of Prob(Rejecting H0|θ0) or Prob(X ∈ W |θ0) is very cumbersome as
it require the joint distribution of r.v.s X = (X1, X2, . . . , Xn) on the n dimensional domain Xn ⊆ Rn.
Hence, in many cases it will be possible to find a function T (X, θ) of X and θ so that univariate T has
a well behaved sampling distribution independent of θ under H0. Under H0, i.e. if H0 is true, T (X, θ)
will be T (X, θ0) or simply, T(X) as θ is fixed at known θ0. Typically, T(X) is a function of sufficient
statistic1 for the model parameter θ for a sample of size n. Hence one can easily find a subset C of T
(sample space of T ) based on which we can decide whether to reject H0. This C is called critical region/
rejection region corresponding to the test statistic T (X, θ0) for a given α and it is found from equation
Prob(T (X, θ0) ∈ C) = α.

Rejection Region/ Critical region (Definition 2): The set of values of the test statistic for which
the null hypothesis is rejected. H0 is rejected if the observed value of T assuming H0 is true, T (x, θ0),
belongs to C. Then C will be called critical region for the test associated with the test statistic T (X, θ0).

Following steps that are followed in a usual statistical hypothesis testing problem.

Testing Procedure:

Step 1: Formulate the null hypothesis H0 and the alternative hypothesis HA

Step 2: Identify a test statistic T (X, θ) ∈ T and its sampling distribution assuming H0 is true that
means θ = θ0 (which contradicts HA). Also find the observed value of T for given data and assuming
θ = θ0.

1A function of data is called sufficient statistic for a parameter θ of underlying statistical model if it is just as informative
about θ as the full data. For example,

∑n
i=1Xi or X is sufficient statistic for µ in N(µ, σ2); nth order statistic X(n) is

sufficient for θ in Uniform(0, θ).
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Step 3: Choose a value of α and identify the critical region C ⊆ T by equating α with
Prob(T (X, θ0) ∈ C).

Step 4: If observed value of T, T (x) (from Step 2), falls in the critical region C (already identified in
Step 3), then we reject the H0, otherwise we do not reject H0.

Step 5: Finally, we conclude that the statement in H0 is rejected or not rejected (whichever comes in
Step 4) on the basis of the given data with 100α% level of significance.

Note 3: When T (x) ∈ C, we may say that the observed value is significant at level α and hence, we
reject H0. Otherwise we may say that the observed value is insignificant at level α.

Note 4: Since T (X, θ0) or T (X) is a one-to-one function defined on the domain Xn of (X1, X2, . . . ,
Xn), then there exists an equivalent Critical Region W as a subset of Xn, the sample space.

p-value: A different idea of Testing Procedure:

From previous discussion, now it is clear to us that every test statistic T (X, θ0) or (T (X)) has a well-
behaved explicit form of its theoretical sampling distribution free of θ0 and observed T (x) is just a point
on its domain T. So, there exists some δ ∈ (0, 1) such that T (x) is 100(1 − δ) percentile point of T (X),
i.e. Prob(T (X, θ) > T (x)|θ = θ0)=δ. Now, if α is set as level of significance, then δ < α says the observed
value is very unlikely with respect to H0. This kind of alternative interpretation is the genesis of the idea
of p-value.

p-value: This is the probability of sampling a test statistic at least as extreme as that which was
observed assuming null hypothesis H0 is true (i.e. θ = θ0). Notationally, p-value = Prob(T (X, θ) ≥
T (x, θ0)|θ = θ0).

An alternative process to perform a statistical hypothesis testing is commonly used based on this
p-value. The p-value can be regarded as a measure for the (strength of) evidence against H0. If the
p-value is less than or equal to the chosen significance level α (equivalently, if the observed test statistic
is in the critical region C), then we will reject H0. This is like a guilty verdict in a criminal trial
the evidence is sufficient to reject innocence, thus proving guilt. When p-value is greater than the
chosen α (equivalently, if the observed test statistic is outside the critical region C), then there is not
enough information in the data to reject H0. When, p-value is very close to α, then available evidence is
insufficient to reach a conclusion and in that situation, the experimenter typically gives extra consideration
from the beneficiary’s point of view.
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