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Cayley-Hamilton Theorem

In linear algebra, the Cayley-Hamilton theorem (named after the mathematicians Arthur Cayley
and William Rowan Hamilton) states that every square matrix (with real or complex entries)
satisfies its own characteristic equation.

If A is a given n×n matrix and In is the n×n identity matrix, then the characteristic polynomial
of A is defined as

p(t) = |A− tIn|,

where t is a variable for a scalar element of the base ring. The Cayley-Hamilton theorem states
that if one defines an analogous matrix equation, p(A), consisting of the replacement of t with the
matrix A, then this polynomial in the matrix A results in the zero matrix,

p(A) = 0.

Theorem

If p(t) is the characteristic polynomial for an n × n matrix A, then the matrix p(A) satisfies
p(A) = 0.

Proof. Let A be a square matrix with characteristic polynomial p(t) = |A− tIn| = c0t
n + c1t

n−1 +
c2t

n−2 + · · ·+ cn. Then, we have to show that c0A
n + c1A

n−1 + c2A
n−2 + · · ·+ cnIn = O.

First, observe that |At− In| = tn|A− t−1In| = c0 + c1t+ c2t
2 + · · ·+ cnt

n. Now Laplaces formula
for calculating the determinant gives the standard equation

|In − tA|In = (In − tA)adj(In − tA)

where adj(M ) denotes the adjugate (or classical adjoint) of matrix M. If we consider formal power
series in t, then (IntA) is invertible and (In − tA)−1 =

∑∞
i=0A

iti. So( ∞∑
i=0

Aiti

)(
c0 + c1t+ c2t

2 + · · ·+ cnt
n
)
In = adj(In − tA).
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Writing adj(In − tA) as a formal power series in t we have adj(In − tA) =
∑∞

i=0Bit
i. Therefore

from last identity we have( ∞∑
i=0

Aiti

)(
c0 + c1t+ c2t

2 + · · ·+ cnt
n
)
In =

∞∑
i=0

Bit
i.

Observe that the entries in adj(In − tA) are polynomials in t of degree at most n− 1. So Bi is the
zero matrix for i ≥ n. Equating the coefficients of tn on both sides gives

c0A
n + c1A

n−1 + c2A
n−2 + · · ·+ cnIn = O.

Example.

Let A=

[
1 1
1 3

]
. The characteristic polynomial p(t) of A is

p(t) = |A− tI2| =
[
1− t 1

1 3− t

]
= t2 − 4t+ 2.

Then the Cayley-Hamilton theorem says that the matrix p(A) = A2−4A+ 2I2 is the 2×2 zero
matrix. One can directly check this:

p(A) = A2 − 4A+ 2I =

[
1 1
1 3

] [
1 1
1 3

]
− 4

[
1 1
1 3

]
+ 2

[
1 0
0 1

]

=

[
2 4
4 10

]
+

[
−4 −4
−4 −12

]
+

[
2 0
0 2

]
=

[
0 0
0 0

]
.

Now we discuss some problems in matrix algebra which can be solved using the Cayley-Hamilton
theorem. Therefore, the following problems can be treated as applications of Cayley-Hamilton
theorem

Problem 1 (Calculation of matrix polynomial)

Let T=

1 0 2
0 1 1
0 0 2

. Calculate and simplify the expression of matrix polynomial T 3+4T 2+5T−2I3,

where I3 is the 3× 3 identity matrix.

Solution. To obtain the characteristic polynomial for T, we note that the matrix T is upper
triangular. Thus T − tI3 is also upper triangular and recall that the determinant of an upper
triangular matrix is the product of the diagonal entries. Thus the characteristic polynomial pT (t)
for T is

pT (t) = det(T − tI3) = (1− t)(1− t)(2− t) = −t3 + 4t2 − 5t+ 2.
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By the Cayley-Hamilton theorem, we have pT (T ) = −T 3 + 4T 2−5T + 2I3 = O. Here O is the 3×3
zero matrix. Now we compute

−T 3 + 4T 2 + 5T − 2I = (−T 3 + 4T 2 − 5T + 2I) + (10T − 4I)

= pT (T ) + 10T − 4I = 10T − 4I

=

10 0 20
0 10 10
0 0 20

 4 0 0
0 4 0
0 0 4



=

6 0 20
0 6 10
0 0 16

 .
Hence the answer.

Problem 2 (Computation of inverse of a matrix)

Find the inverse matrix of the matrix A=

 7 2 −2
−6 −1 2
6 2 −1

 using the CayleyHamilton theorem.

Solution. To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial
pA(t) of the matrix A. Let I3 be the 33 identity matrix. Therefore we have

pA(t) = ‖A− tI|

=

∣∣∣∣∣∣
7− t 2 −2
−6 −1− t 2
6 2 −1− t

∣∣∣∣∣∣
= (7− t)

∣∣∣∣−1− t 2
2 −1− t

∣∣∣∣− 2

∣∣∣∣−6 2
6 −1− t

∣∣∣∣+ (−2)

∣∣∣∣−6 −1− t
6 2

∣∣∣∣
(by the first row cofactor expansion)

= −t3 + 5t2 − 7t+ 3.

Therefore the Cayley-Hamilton theorem yields that pA(A) = −A3 + 5A2 − 7A+ 3I3 = O, where O
is the 3× 3 zero matrix. Rearranging terms, we have

A3 − 5A2 + 7A = 3I3

⇔ A(A2 − 5A+ 7I3) = 3I3

⇔ A

(
1

3
(A2 − 5A+ 7I3)

)
= I3

⇔ A−1 =
1

3
(A2 − 5A+ 7I3).

Therefore, we have A−1 = 1
3

−3 −2 2
6 5 −2
−6 −2 5

 .
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Problem 2 (Expression of inverse matrix from eigen values)

A matrix A is a 3× 3 matrix with eigenvalues = i, i,−1. Check whether the A is invertible? If so,
find an expression for A−1 as a linear combination of positive powers of A.

Solution. The determinant of a matrix is the product of its eigenvalues. So, |A| = i.(i).(−1) = −1.
Because the determinant is non-zero, the matrix A is non-singular, and thus is invertible. Next, To
find an expression for A−1, we will use the Cayley-Hamilton theorem. First we find the character-
istic polynomial of A, which is p(λ) = (λ− i)(λ+ i)(λ+ 1) = λ3 + λ2 + λ+ 1. Therefore, Cayley-
Hamilton theorem yields A3 +A2 +A+ I = 0. Rewriting this, we have I = −AA2A3 = A(−IAA2).
Multiplying on the left by A−1 yields the desired equation, A−1 = −IAA2.

Exercises

1. Find the inverse matrix of the matrix A=

1 1 2
9 2 0
5 0 3

 using the Cayley-Hamilton theorem.

2. Let A, B be 2× 2 matrices satisfying the relation A = AB −BA. Prove that A2 = O, where
O is the 2× 2 zero matrix.

3. Let A and B be 2 × 2 matrices such that (AB)2 = O, where O is the 2 × 2 zero matrix.
Determine whether (BA)2 must be O as well. If so, prove it. If not, give a counter example.

4. A matrix A is a 3 × 3 matrix with eigenvalues = i, i, 0. Check whether A is invertible? If
so, find an expression for A−1 as a linear combination of positive powers of A. If A is not
invertible, explain why.
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