Characteristic roots and Characteristic vector Cayley-Hamilton Theorem \& its Applications

Kiranmoy Chatterjee*

Cayley-Hamilton Theorem

In linear algebra, the Cayley-Hamilton theorem (named after the mathematicians Arthur Cayley and William Rowan Hamilton) states that every square matrix (with real or complex entries) satisfies its own characteristic equation.

If \boldsymbol{A} is a given $n \times n$ matrix and I_{n} is the $n \times n$ identity matrix, then the characteristic polynomial of \boldsymbol{A} is defined as

$$
p(t)=\left|\mathbf{A}-t I_{n}\right|,
$$

where t is a variable for a scalar element of the base ring. The Cayley-Hamilton theorem states that if one defines an analogous matrix equation, $p(\boldsymbol{A})$, consisting of the replacement of t with the matrix \boldsymbol{A}, then this polynomial in the matrix \boldsymbol{A} results in the zero matrix,

$$
p(\boldsymbol{A})=\boldsymbol{O}
$$

Theorem

If $p(t)$ is the characteristic polynomial for an $n \times n$ matrix \boldsymbol{A}, then the matrix $p(\boldsymbol{A})$ satisfies $p(\boldsymbol{A})=\boldsymbol{0}$.

Proof. Let A be a square matrix with characteristic polynomial $p(t)=\left|A-t I_{n}\right|=c_{0} t^{n}+c_{1} t^{n-1}+$ $c_{2} t^{n-2}+\cdots+c_{n}$. Then, we have to show that $c_{0} A^{n}+c_{1} A^{n-1}+c_{2} A^{n-2}+\cdots+c_{n} I_{n}=O$.

First, observe that $\left|A t-I_{n}\right|=t^{n}\left|A-t^{-1} I_{n}\right|=c_{0}+c_{1} t+c_{2} t^{2}+\cdots+c_{n} t^{n}$. Now Laplaces formula for calculating the determinant gives the standard equation

$$
\left|I_{n}-t A\right| I_{n}=\left(I_{n}-t A\right) \operatorname{adj}\left(I_{n}-t A\right)
$$

where $\operatorname{adj}(M)$ denotes the adjugate (or classical adjoint) of matrix M. If we consider formal power series in t, then $\left(I_{n} t A\right)$ is invertible and $\left(I_{n}-t A\right)^{-1}=\sum_{i=0}^{\infty} A^{i} t^{i}$. So

$$
\left(\sum_{i=0}^{\infty} A^{i} t^{i}\right)\left(c_{0}+c_{1} t+c_{2} t^{2}+\cdots+c_{n} t^{n}\right) I_{n}=a d j\left(I_{n}-t A\right) .
$$

[^0]Writing $\operatorname{adj}\left(I_{n}-t A\right)$ as a formal power series in t we have $\operatorname{adj}\left(I_{n}-t A\right)=\sum_{i=0}^{\infty} B_{i} t^{i}$. Therefore from last identity we have

$$
\left(\sum_{i=0}^{\infty} A^{i} t^{i}\right)\left(c_{0}+c_{1} t+c_{2} t^{2}+\cdots+c_{n} t^{n}\right) I_{n}=\sum_{i=0}^{\infty} B_{i} t^{i}
$$

Observe that the entries in $\operatorname{adj}\left(I_{n}-t A\right)$ are polynomials in t of degree at most $n-1$. So B_{i} is the zero matrix for $i \geq n$. Equating the coefficients of t^{n} on both sides gives
$c_{0} A^{n}+c_{1} A^{n-1}+c_{2} A^{n-2}+\cdots+c_{n} I_{n}=O$.

Example.

Let $\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right]$. The characteristic polynomial $p(t)$ of A is

$$
\begin{aligned}
p(t) & =\left|A-t I_{2}\right|=\left[\begin{array}{cc}
1-t & 1 \\
1 & 3-t
\end{array}\right] \\
& =t^{2}-4 t+2 .
\end{aligned}
$$

Then the Cayley-Hamilton theorem says that the matrix $p(A)=A^{2}-4 A+2 I_{2}$ is the 2×2 zero matrix. One can directly check this:

$$
\begin{aligned}
p(A) & =A^{2}-4 A+2 I=\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right]-4\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right]+2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 4 \\
4 & 10
\end{array}\right]+\left[\begin{array}{cc}
-4 & -4 \\
-4 & -12
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
\end{aligned}
$$

Now we discuss some problems in matrix algebra which can be solved using the Cayley-Hamilton theorem. Therefore, the following problems can be treated as applications of Cayley-Hamilton theorem

Problem 1 (Calculation of matrix polynomial)

Let $\mathrm{T}=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 2\end{array}\right]$. Calculate and simplify the expression of matrix polynomial $T^{3}+4 T^{2}+5 T-2 I_{3}$, where I_{3} is the 3×3 identity matrix.

Solution. To obtain the characteristic polynomial for T, we note that the matrix T is upper triangular. Thus $T-t I_{3}$ is also upper triangular and recall that the determinant of an upper triangular matrix is the product of the diagonal entries. Thus the characteristic polynomial $p_{T}(t)$ for T is

$$
p_{T}(t)=\operatorname{det}\left(T-t I_{3}\right)=(1-t)(1-t)(2-t)=-t^{3}+4 t^{2}-5 t+2 .
$$

By the Cayley-Hamilton theorem, we have $p_{T}(T)=-T^{3}+4 T^{2}-5 T+2 I_{3}=O$. Here O is the 3×3 zero matrix. Now we compute

$$
\begin{aligned}
-T^{3}+4 T^{2}+5 T-2 I & =\left(-T^{3}+4 T^{2}-5 T+2 I\right)+(10 T-4 I) \\
& =p_{T}(T)+10 T-4 I=10 T-4 I \\
& =\left[\begin{array}{ccc}
10 & 0 & 20 \\
0 & 10 & 10 \\
0 & 0 & 20
\end{array}\right]\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
6 & 0 & 20 \\
0 & 6 & 10 \\
0 & 0 & 16
\end{array}\right]
\end{aligned}
$$

Hence the answer.

Problem 2 (Computation of inverse of a matrix)

Find the inverse matrix of the matrix $\mathrm{A}=\left[\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right]$ using the CayleyHamilton theorem.
Solution. To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial $p_{A}(t)$ of the matrix A. Let I_{3} be the 33 identity matrix. Therefore we have

$$
\begin{aligned}
p_{A}(t) & =\| A-t I \mid \\
& =\left|\begin{array}{ccc}
7-t & 2 & -2 \\
-6 & -1-t & 2 \\
6 & 2 & -1-t
\end{array}\right| \\
& =(7-t)\left|\begin{array}{cc}
-1-t & 2 \\
2 & -1-t
\end{array}\right|-2\left|\begin{array}{cc}
-6 & 2 \\
6 & -1-t
\end{array}\right|+(-2)\left|\begin{array}{cc}
-6 & -1-t \\
6 & 2
\end{array}\right|
\end{aligned}
$$

(by the first row cofactor expansion)

$$
=-t^{3}+5 t^{2}-7 t+3 .
$$

Therefore the Cayley-Hamilton theorem yields that $p_{A}(A)=-A^{3}+5 A^{2}-7 A+3 I_{3}=O$, where O is the 3×3 zero matrix. Rearranging terms, we have

$$
\begin{aligned}
& A^{3}-5 A^{2}+7 A=3 I_{3} \\
& \Leftrightarrow A\left(A^{2}-5 A+7 I_{3}\right)=3 I_{3} \\
& \Leftrightarrow A\left(\frac{1}{3}\left(A^{2}-5 A+7 I_{3}\right)\right)=I_{3} \\
& \Leftrightarrow A^{-1}=\frac{1}{3}\left(A^{2}-5 A+7 I_{3}\right) .
\end{aligned}
$$

Therefore, we have $\mathrm{A}^{-1}=\frac{1}{3}\left[\begin{array}{ccc}-3 & -2 & 2 \\ 6 & 5 & -2 \\ -6 & -2 & 5\end{array}\right]$.

Problem 2 (Expression of inverse matrix from eigen values)

A matrix A is a 3×3 matrix with eigenvalues $=i, i,-1$. Check whether the A is invertible? If so, find an expression for A^{-1} as a linear combination of positive powers of A.

Solution. The determinant of a matrix is the product of its eigenvalues. So, $|A|=i .(i) \cdot(-1)=-1$. Because the determinant is non-zero, the matrix A is non-singular, and thus is invertible. Next, To find an expression for A^{-1}, we will use the Cayley-Hamilton theorem. First we find the characteristic polynomial of A, which is $p(\lambda)=(\lambda-i)(\lambda+i)(\lambda+1)=\lambda^{3}+\lambda^{2}+\lambda+1$. Therefore, CayleyHamilton theorem yields $A^{3}+A^{2}+A+I=\mathbf{0}$. Rewriting this, we have $I=-A A^{2} A^{3}=A\left(-I A A^{2}\right)$. Multiplying on the left by A^{-1} yields the desired equation, $A^{-1}=-I A A^{2}$.

Exercises

1. Find the inverse matrix of the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 2 \\ 9 & 2 & 0 \\ 5 & 0 & 3\end{array}\right]$ using the Cayley-Hamilton theorem.
2. Let A, B be 2×2 matrices satisfying the relation $A=A B-B A$. Prove that $A^{2}=O$, where O is the 2×2 zero matrix.
3. Let A and B be 2×2 matrices such that $(A B)^{2}=O$, where O is the 2×2 zero matrix. Determine whether $(B A)^{2}$ must be O as well. If so, prove it. If not, give a counter example.
4. A matrix A is a 3×3 matrix with eigenvalues $=i, i, 0$. Check whether A is invertible? If so, find an expression for A^{-1} as a linear combination of positive powers of A. If A is not invertible, explain why.

[^0]: *Assistant Professor, Department of Statistics, Bidhannagar College, Kolkata, India. E-mail: kiranmoy07@gmail.com.

