Characteristic roots and Characteristic vector Cayley-Hamilton Theorem & its Applications

Kiranmoy Chatterjee*

Cayley-Hamilton Theorem

In linear algebra, the Cayley-Hamilton theorem (named after the mathematicians Arthur Cayley and William Rowan Hamilton) states that every square matrix (with real or complex entries) satisfies its own characteristic equation.

If **A** is a given $n \times n$ matrix and I_n is the $n \times n$ identity matrix, then the characteristic polynomial of **A** is defined as

$$p(t) = |\mathbf{A} - tI_n|$$

where t is a variable for a scalar element of the base ring. The Cayley-Hamilton theorem states that if one defines an analogous matrix equation, $p(\mathbf{A})$, consisting of the replacement of t with the matrix \mathbf{A} , then this polynomial in the matrix \mathbf{A} results in the zero matrix,

$$p(\boldsymbol{A}) = \boldsymbol{0}.$$

Theorem

If p(t) is the characteristic polynomial for an $n \times n$ matrix A, then the matrix p(A) satisfies p(A) = 0.

Proof. Let A be a square matrix with characteristic polynomial $p(t) = |A - tI_n| = c_0 t^n + c_1 t^{n-1} + c_2 t^{n-2} + \cdots + c_n$. Then, we have to show that $c_0 A^n + c_1 A^{n-1} + c_2 A^{n-2} + \cdots + c_n I_n = O$.

First, observe that $|At - I_n| = t^n |A - t^{-1}I_n| = c_0 + c_1t + c_2t^2 + \cdots + c_nt^n$. Now Laplaces formula for calculating the determinant gives the standard equation

$$|I_n - tA|I_n = (I_n - tA)adj(I_n - tA)$$

where $\operatorname{adj}(M)$ denotes the adjugate (or classical adjoint) of matrix M. If we consider formal power series in t, then $(I_n tA)$ is invertible and $(I_n - tA)^{-1} = \sum_{i=0}^{\infty} A^i t^i$. So

$$\left(\sum_{i=0}^{\infty} A^i t^i\right) \left(c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n\right) I_n = adj(I_n - tA).$$

^{*}Assistant Professor, Department of Statistics, Bidhannagar College, Kolkata, India. E-mail: kiranmoy07@gmail.com.

Writing $adj(I_n - tA)$ as a formal power series in t we have $adj(I_n - tA) = \sum_{i=0}^{\infty} B_i t^i$. Therefore from last identity we have

$$\left(\sum_{i=0}^{\infty} A^{i} t^{i}\right) \left(c_{0} + c_{1} t + c_{2} t^{2} + \dots + c_{n} t^{n}\right) I_{n} = \sum_{i=0}^{\infty} B_{i} t^{i}.$$

Observe that the entries in $adj(I_n - tA)$ are polynomials in t of degree at most n - 1. So B_i is the zero matrix for $i \ge n$. Equating the coefficients of t^n on both sides gives

$$c_0 A^n + c_1 A^{n-1} + c_2 A^{n-2} + \dots + c_n I_n = O.$$

Example.

Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$. The characteristic polynomial p(t) of A is

$$p(t) = |A - tI_2| = \begin{bmatrix} 1 - t & 1 \\ 1 & 3 - t \end{bmatrix}$$
$$= t^2 - 4t + 2.$$

Then the Cayley-Hamilton theorem says that the matrix $p(A) = A^2 - 4A + 2I_2$ is the 2 × 2 zero matrix. One can directly check this:

$$p(A) = A^{2} - 4A + 2I = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} - 4 \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 4 \\ 4 & 10 \end{bmatrix} + \begin{bmatrix} -4 & -4 \\ -4 & -12 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Now we discuss some problems in matrix algebra which can be solved using the Cayley-Hamilton theorem. Therefore, the following problems can be treated as applications of Cayley-Hamilton theorem

Problem 1 (Calculation of matrix polynomial)

Let $T = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. Calculate and simplify the expression of matrix polynomial $T^3 + 4T^2 + 5T - 2I_3$, where I_3 is the 3×3 identity matrix.

Solution. To obtain the characteristic polynomial for T, we note that the matrix T is upper triangular. Thus $T - tI_3$ is also upper triangular and recall that the determinant of an upper triangular matrix is the product of the diagonal entries. Thus the characteristic polynomial $p_T(t)$ for T is

$$p_T(t) = \det(T - tI_3) = (1 - t)(1 - t)(2 - t) = -t^3 + 4t^2 - 5t + 2t^3$$

By the Cayley-Hamilton theorem, we have $p_T(T) = -T^3 + 4T^2 - 5T + 2I_3 = O$. Here O is the 3×3 zero matrix. Now we compute

$$-T^{3} + 4T^{2} + 5T - 2I = (-T^{3} + 4T^{2} - 5T + 2I) + (10T - 4I)$$
$$= p_{T}(T) + 10T - 4I = 10T - 4I$$
$$= \begin{bmatrix} 10 & 0 & 20\\ 0 & 10 & 10\\ 0 & 0 & 20 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0\\ 0 & 4 & 0\\ 0 & 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & 0 & 20\\ 0 & 6 & 10\\ 0 & 0 & 16 \end{bmatrix}.$$

Hence the answer.

Problem 2 (Computation of inverse of a matrix)

Find the inverse matrix of the matrix $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ using the CayleyHamilton theorem.

Solution. To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial $p_A(t)$ of the matrix A. Let I_3 be the 33 identity matrix. Therefore we have

$$p_A(t) = ||A - tI|$$

$$= \begin{vmatrix} 7 - t & 2 & -2 \\ -6 & -1 - t & 2 \\ 6 & 2 & -1 - t \end{vmatrix}$$

$$= (7 - t) \begin{vmatrix} -1 - t & 2 \\ 2 & -1 - t \end{vmatrix} - 2 \begin{vmatrix} -6 & 2 \\ 6 & -1 - t \end{vmatrix} + (-2) \begin{vmatrix} -6 & -1 - t \\ 6 & 2 \end{vmatrix}$$

(by the first row cofactor expansion)

$$= -t^3 + 5t^2 - 7t + 3t^3 + 5t^2 + 5$$

Therefore the Cayley-Hamilton theorem yields that $p_A(A) = -A^3 + 5A^2 - 7A + 3I_3 = O$, where O is the 3×3 zero matrix. Rearranging terms, we have

$$\begin{split} A^3 - 5A^2 + 7A &= 3I_3 \\ \Leftrightarrow A(A^2 - 5A + 7I_3) &= 3I_3 \\ \Leftrightarrow A\left(\frac{1}{3}(A^2 - 5A + 7I_3)\right) &= I_3 \\ \Leftrightarrow A^{-1} &= \frac{1}{3}(A^2 - 5A + 7I_3). \end{split}$$
 Therefore, we have $A^{-1} &= \frac{1}{3} \begin{bmatrix} -3 & -2 & 2 \\ 6 & 5 & -2 \\ -6 & -2 & 5 \end{bmatrix}.$

Problem 2 (Expression of inverse matrix from eigen values)

A matrix A is a 3×3 matrix with eigenvalues = i, i, -1. Check whether the A is invertible? If so, find an expression for A^{-1} as a linear combination of positive powers of A.

Solution. The determinant of a matrix is the product of its eigenvalues. So, |A| = i.(i).(-1) = -1. Because the determinant is non-zero, the matrix A is non-singular, and thus is invertible. Next, To find an expression for A^{-1} , we will use the Cayley-Hamilton theorem. First we find the characteristic polynomial of A, which is $p(\lambda) = (\lambda - i)(\lambda + i)(\lambda + 1) = \lambda^3 + \lambda^2 + \lambda + 1$. Therefore, Cayley-Hamilton theorem yields $A^3 + A^2 + A + I = \mathbf{0}$. Rewriting this, we have $I = -AA^2A^3 = A(-IAA^2)$. Multiplying on the left by A^{-1} yields the desired equation, $A^{-1} = -IAA^2$.

Exercises

- 1. Find the inverse matrix of the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 9 & 2 & 0 \\ 5 & 0 & 3 \end{bmatrix}$ using the Cayley-Hamilton theorem.
- 2. Let A, B be 2×2 matrices satisfying the relation A = AB BA. Prove that $A^2 = O$, where O is the 2×2 zero matrix.
- 3. Let A and B be 2×2 matrices such that $(AB)^2 = O$, where O is the 2×2 zero matrix. Determine whether $(BA)^2$ must be O as well. If so, prove it. If not, give a counter example.
- 4. A matrix A is a 3×3 matrix with eigenvalues = i, i, 0. Check whether A is invertible? If so, find an expression for A^{-1} as a linear combination of positive powers of A. If A is not invertible, explain why.